Study of ratcheting by the indentation fatigue method with a flat cylindrical indenter. Part II. Finite element simulation

Author:

Xu B.X.,Yue Z.F.

Abstract

The finite element method (FEM) was used to study the flat cylindrical indentation fatigue behavior using a kinematic hardening model (A-F model). This study was motivated by the experimental work of the preceding paper [B.X. Xu and Z.F. Yue, J. Mater. Res.21, 1793 (2006)], in which there were obvious similarities in the behavior of conventional fatigue specimens and indentation fatigue specimens. It is proposed that the A-F model can predict the indentation fatigue behavior. Generally, the experimental behavior of the indentation fatigue testing can be explained by the FEM analysis. In addition, the effect of residual stress on the indentation depth per cycle was studied. The effect of friction between the indenter and the specimen and evolution of von Mises stress beneath the indenter was also investigated. Numerical results showed that the effect of friction on the indentation depth propagation can be neglected. Further analysis showed that the steady-state indentation depth per cycle increases with increasing compressive residual stress and decreasing tensile residual stress.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3