Author:
Tomich David H.,Eyink K. G.,Haas T. W.,Capano M. A.,Kaspi R.,Cooley W. T.
Abstract
AbstractTernary and quaternary III-V alloys are important for many optical device applications, and a precise control of the composition is required. Molecular beam epitaxy (MBE) is generally considered a non-equilibrium or kinetically controlled process but most of these models are too computationally intensive for real time control. We report on using a precursor state growth model 1,2 for the growth of GaAsSb to control the growth conditions and hence the film composition. The activation energies and the parameters appearing in the relationship are determined by fitting the calculated compositions to experimental ones as determined by x-ray diffraction. The effect of substrate temperature, growth rate and flux intensities on composition is discussed.
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Emerging Materials Technology;Review of Progress in Quantitative Nondestructive Evaluation;1995