Interfacial Shear Strength of Ion Beam Modified UHMW-PE Fibers in Epoxy Matrix Composites

Author:

Ozzello A.,Grummon D. S.,Drzal L. T.,Kalantar J.,Loh I-H.,Moody R. A.

Abstract

AbstractUltra-high molecular weight polyethylene fibers possess exceptional strength and stiffness combined with low density. Their use as reinforcements in polymer matrix composites has, however, been limited by poor fiber adhesion. In the present study, individual fibers of UHMW-PE (Allied-Signal SPECTRA-1000) were modified by direct implantation of N+, Ti+ and Ar+ ions, at energies between 30 and 100 KeV, to doses ranging between 1x1014 and lx1015 ions/cm2. Fiber tensile strength was generally unaffected by these irradiations. Single-fiber droplet pull-off tests using DGEBA Epoxy with m-PDA curing agent have shown that ion beam surface modification of the fibers can give an increase of over 300% in interfacial shear strength (ISS). The improvements were found to vary with dose but were relatively insensitive to implant species. TEM observation of transverse microtomed sections confirmed a substantial improvement in fiber-matrix adhesion for ion beam modified UHMW-PE composites.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Thermoset droplet curing performance in the microbond test;Composite Interfaces;2024-04-25

2. Micromechanical and spectroscopic characterisation of the curing performance of epoxy resins in the microbond test;IOP Conference Series: Materials Science and Engineering;2020-10-01

3. Sulfonation of UHMW-PE fibers for adhesion promotion in epoxy polymers;Journal of Adhesion Science and Technology;2002-01

4. Measurement methods for fiber-matrix adhesion in composite materials;Adhesion Science and Engineering;2002

5. Fiber–Matrix Interface Tests;Comprehensive Composite Materials;2000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3