Medium-Range Order in a-Si:H Below and Above the Onset of Microcrystallinity

Author:

Williamson D.L.

Abstract

AbstractMedium range order (MRO) and the formation of microcrystallites in a-Si:H prepared by plasma-enhanced chemical vapor deposition (PECVD) and hot-wire chemical vapor deposition (HWCVD) have been probed by systematic x-ray diffraction studies with films as thin as those used in solar cells. Effects of substrate temperature, hydrogen dilution, film thickness, and type of substrate have been examined. High-hydrogen-diluted films of 0.5 μm thickness, using optimized deposition parameters for solar cell efficiency and stability, are found to be partially microcrystalline (μc) if deposited directly on stainless steel (SS) substrates but are fully amorphous provided a thin (20 nm) n-layer of a-Si:H or μc-Si:H is first deposited on the SS. The latter predeposition does not prevent partially microcrystallinity if the films are grown thicker (1.5 to 2.5 μm) and this is consistent with a recently proposed phase diagram of thickness versus hydrogen dilution. Analysis of the first (lowest angle) scattering peak of the a-Si:H phase demonstrates that its width, directly related to MRO, is reduced by heavier hydrogen dilution in PECVD growth or by increased substrate temperature in HWCVD growth. The narrowest width of fully amorphous material correlates with better solar cell stability and this is not likely related to bonded hydrogen content since it is quite different in the optimized PECVD and HWCVD a-Si:H. A wide range of MRO apparently exists in the residual amorphous phase of the mixed a/μc material.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 65 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3