Author:
Zollondz J.-H.,Main C.,Reynolds S.
Abstract
AbstractWe report measured electron and hole gating in thick a-Si:H (3.5 μm) p-i-n diodes under reverse bias conditions. Previous publications have shown very high collection efficiency values for electron gating (p-side bias, n-side probe) of up to 50 (i.e. 5000%) for measured and simulated data and predictions of up to 400 (i.e. 40000%) from simulations. Reversing the usual sides of illumination for (electron) gating a situation can be created where, by n-side bias and p-side probe illumination, holes can be gated to travel through the sample to be collected at the contact. Even though the holes have much lower mobility, by this process we can still obtain collection efficiencies greater than unity. This measurement is more difficult because of unwanted illumination by stray bias beam photons on the more sensitive p-side, caused by reflections within the apparatus. Simulation of this situation corroborates qualitatively the measured data. A wide ranging study of the gating phenomenon in relation to different incident wavelengths and photon fluxes for bias and probe beam is reported. We present comparisons of electron and hole gating by measurement and simulation and explain the phenomenon for both electron and hole gating in terms of field changes near to the incident bias interface.
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献