Very Wide-Gap and Device-Quality a-Si:H from Highly H2 Diluted SiH4 Plasma Decomposed by High RF Power

Author:

Terada N.,Yata S.,Terakawa A.,Okamoto S.,Wakisaka K.,Kiyama S.

Abstract

AbstractThe H2 dilution technique at a high deposition rate (RD) was investigated by depositing hydrogenated amorphous silicon (a-Si:H) under a high if power density of 750 mW/cm2, which is 20 times as large as that of conventional conditions. It was found that the H2 dilution ratio γ ( = [H2 gas flow rate] / [SiH4 gas flow rate]) tendency of the film properties, such as the H content (CH), optical gap (Eopt), SiH2/SiH and photoconductivity (σph) of a-Si:H is different for the high rf power (750 mW/cm2) and the medium rf power (75 mW/cm2) conditions. Under medium rf power, the CH, Eopt and SiH2/SiH decrease as γ increases. Under the high if power, on the contrary, the CH and Eopt, monotonously increase while maintaining a low SiH2/SiH and a high σph of 10-6 S/cm as γ increases. These results suggest that increasing the rf power enhances the H incorporation reactions due to H2 dilution. It is thought that a high rf power causes the depletion of SiH4 and hence the extinction of H radicals, expressed by SiH4 + H* → SiH3* + H2, is suppressed. A high H radical density enhances the incorporation of H into a-Si:H, resulting in very wide-gap a-Si:H with a high CH, Consequently, very wide-gap a-Si:H with device-quality (Eopt of 1.82 eV with an (αhv)1/3 plot, corresponding to > 2.1 eV with Tauc's plot, and σph of 10-6 S/cm) can be obtained at a high RD of 12 Å/s without carbon alloying.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3