Effect of MnO on the microstructures, phase stability, and mechanical properties of ceria-partially-stabilized zirconia (Ce–TZP) and Ce–TZP–Al2O3 composites

Author:

Wang J. S.,Tsai J. F.,Shetty D. K.,Virkar A. V.

Abstract

The effects of increasing amounts of MnO additions on the microstructures, phase stability, and mechanical properties of ZrO2–12 mol % CeO2 and ZrO2–12 mol% CeO2–10 wt.% Al2O3 were studied. MnO suppressed grain growth in ZrO2–12 mol% CeO2, while enhancing the mechanical properties significantly (strength = 557 MPa, fracture toughness = 9.3 MPa at 0.2 wt.% MnO). The enhanced mechanical properties were achieved despite an increased stability of the tetragonal phase, as evidenced by a lower burst transformation temperature (Mb) and a reduced volume fraction of the monoclinic phase on the fracture surface. In ZrO2–12 mol% CeO2–10 wt.% Al2O3, the addition of MnO suppressed the grain size of ZrO2, while promoting grain growth and changing the morphology of Al2O3. More significantly, the stability of the tetragonal ZrO2 phase decreased (high Mb temperature) with a concurrent increase in fracture toughness (13.2 MPa at 2 wt.% MnO) and transformation plasticity (1.2% in four-point bending). The widths of the transformation zones observed adjacent to the fracture surfaces showed a consistent inverse relation to the transformation yield stress, as would be expected from the mechanics of stress-induced phase transformation at crack tips. The improvements in mechanical properties obtained in the base Ce–TZP and the Ce–TZP–Al2O3 composite ceramics with the addition of MnO are critically examined in the context of transformation toughening and other possible mechanisms.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference21 articles.

1. Fracture Mechanisms in Ferroelectric-Ferroelastic Lead Zirconate Titanate (Zr: Ti=0.54:0.46) Ceramics

2. Stability of Tetragonal ZrO2 Particles in Ceramic Matrices

3. 18 Huang S. L. and Chen I.-Wei , “Grain Growth Control in Zirconia Polycrystals”, paper presented at the 4th Int. Conf. on the Science and Technology of Zirconia, Annaheim, CA, November 1 (1989).

4. Transformation zone shape in ceriapartially-stabilized zirconia

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3