Author:
Chen L. C.,Spaepen F.,Robertson J. L.,Moss S. C.,Hiraga K.
Abstract
Scanning and isothermal calorimetry, together with x-ray diffraction and high resolution transmission electron microscopy (TEM), have been used to characterize Al–Mn and Al–Mn–Si films sputtered onto substrates at 60 °C, 45 °C, and −100 °C. In the case of Al0.83Mn0.17, the monotonically decreasing isothermal calorimetric signal, characteristic of a grain growth process, has proved decisive in identifying the as-sputtered “amorphous” state as microquasicrystalline, with an average grain size of ∼ 20 Å, in agreement with an estimate of correlation range from the x-ray pattern. The TEM at 400 keV reveals well-defined atomic or lattice images in annealed films but only barely resolved grains (ordered clusters) in the as-sputtered films. The relation between the metallic glass and the microquasicrystalline state in these alloys is discussed.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献