Ultralow-load indentation hardness and modulus of diamond films deposited by hot-filament-assisted CVD

Author:

Beetz C. P.,Cooper C. V.,Perry T. A.

Abstract

Diamond films, ranging in thickness to approximately 35 μm, were grown on Si(100) substrates using hot-filament-assisted CVD. Two different CH4:H2 ratios were employed during deposition, and the effects on the film morphology and ultralow-load indentation hardness and modulus were investigated. Films deposited from a single, linear filament exhibited a nonuniform deposition thickness profile that can be described by a simple exponential function. Films deposited at lower methane concentrations, 0.11% CH4 in H2, had larger crystallite sizes of ∼5–8 μm, an average hardness of 31 GPa, and an average modulus of 541 GPa. A higher CH4 concentration of 0.99% in H2 resulted in the formation of finer crystallites of approximately 0.5 μm, an average hardness of 65 GPa, and an average modulus of 875 GPa. While these values lie on the low end or outside of the range reported for single crystal diamond, this study has demonstrated that CVD diamond films can be synthesized with ultrahigh or near ultrahigh hardness.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference31 articles.

1. Bound Excitons and Donor-Acceptor Pairs in Natural and Synthetic Diamond

2. A method for interpreting the data from depth-sensing indentation instruments

3. 9 Beetz C. P. and Perry T. A. , General Motors Research Publication GMR-6093, November 14, 1987.

4. 15 Perry T. A. and Beetz C.P. , General Motors Research Publication GMR-6370, 16 July 1988.

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3