Author:
Sharma S. C.,Green M.,Hyer R. C.,Dark C. A.,Black T. D.,Chourasia A. R.,Chopra D. R.,Mishra K. K.
Abstract
We have deposited diamond films on Si〈111〉 using hot filament assisted chemical vapor deposition at low pressures ∼25 Torr. Diamond films deposited at different relative concentrations of methane (ranging from 0.25% to 2.0%) in methane-hydrogen mixtures have been characterized by Raman spectroscopy, scanning electron microscopy, and x-ray photoelectron spectroscopy. With varying methane concentration, Raman spectra show features characteristic of crystalline diamond, diamond-like carbon, and polycrystalline graphite. Scanning electron micrographs show densely packed diamond crystallites. SEM measurements made on diamond films grown as a function of time show that the median grain size of the diamond crystallites increases linearly with time during the initial phase of the growth. X-ray photoelectron spectroscopy reveals differences between the diamond sp3 covalent bonding and sp2 graphitic bonding as well as the extent of s-p hybridization as a function of methane concentration. The plasmon loss shoulder, characteristic of graphite, is absent from the spectrum of 0.25% methane concentration film. But it appears in the XPS spectra of films grown at higher concentrations.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
63 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献