High growth rate diamond synthesis in a large area atmospheric pressure inductively coupled plasma

Author:

Cappelli M. A.,Owano T. G.,Kruger C. H.

Abstract

A study of diamond synthesis in an atmospheric pressure inductively coupled argon-hydrogen-methane plasma is presented. The plasma generated has an active area of 20 cm2 and a free stream temperature of approximately 5000 K. Deposition experiments lasting 1 h in duration have been performed in both stagnation flow and flat plate parallel flow geometries. The diamond film deposited in both configurations are nonuniform yet fairly reproducible. The variation in the growth rates at various regions of the substrate is attributed to the variation in the surface atomic hydrogen flux. Growth rates are as high as 50 μm/h, in regions of the substrate where the atomic hydrogen flux is expected to be large. Little or no growth is observed in regions where the atomic hydrogen is expected to recombine within the thermal boundary layer before arriving at the surface. Individual particles are analyzed by micro-Raman spectroscopy. Large (50 μm) size well-faceted particles show little evidence of non-diamond carbon content and are found to be under a state of compression, displaying shifts in the principal phonon mode as great as 3 cm−1.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference27 articles.

1. Vapor growth of diamond on diamond and other surfaces

2. 5 Hirose Y. , (Japan New Diamond Forum) p. 38, October 24–26, Tokyo, Japan (1988).

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3