Author:
Wolfenstine J.,González-Doncel G.,Sherby O. D.
Abstract
The creep behavior of Mg–14Li particulate composites containing 0,10,20, and 30 vol. % boron particles was evaluated from 230 to 280°C. The results reveal that the creep strength of the particulate composite is increased by a factor of eight over the Mg–14Li matrix with the addition of 30 vol. % boron. The body-centered cubic (bcc) Mg–14Li alloy is shown, however, to be much weaker than hexagonal close-packed (hep) pure magnesium. This difference is attributed to the high rate of atom mobility in the open structure of the Mg–14Li bcc alloy. It is predicted that a Mg–6Li–30B particulate composite, containing an hep matrix structure, will have a higher specific strength at 250°C than the new experimental aluminum base–high iron alloys prepared by rapid solidification processing.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献