Brittle cleavage of L12 trialuminides

Author:

George E. P.,Horton J. A.,Porter W. D.,Schneibel J. H.

Abstract

Three trialuminide alloys, binary Al–25Sc, ternary Al–25Zr–6Fe, and quaternary Al–23Ti–6Fe–5V, all having the cubic L12 structure, were investigated. All three alloys fracture in a brittle manner (fracture toughness, 2–3 MPa m½), predominantly by transgranular cleavage. Of nineteen cleavage facets examined in binary Al3Sc, seventeen were of the {110} type and only two were of the {100} type, consistent with our earlier work which showed that the cleavage plane occurring most frequently in quaternary Al–23Ti–6Fe–5V is also {110}. The room-temperature hardnesses and yield strengths (100–200 DPH and 100–270 MPa, respectively) of all three alloys are quite low (comparable to ductile L12 alloys like Ni3Al), indicating that there is significant dislocation activity in these materials. Consistent with this, transmission electron microscopy identified several APB-coupled dislocations with b - a/2〈110〉 gliding on the {111} planes in both binary Al–25Sc and quaternary Al–23Ti–6Fe–5V. The separations between the superpartials in Al–25Sc and Al–23Ti–6Fe–5V were measured to be 3.7 and 4 nm, respectively, giving APB energies of 313 and 274 mJ/m2, respectively. Auger analyses failed to detect any impurities on the cleavage facets themselves, or on second phase particles (or other potential cleavage crack nucleation sites). It is therefore concluded that brittle fracture in these alloys is not impurity-induced. Based on all the results obtained to date we conclude that the unusual brittleness of L12 trialuminides is related to their intrinsically low cleavage strength. Possible reasons for their low cleavage strength are discussed.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3