Role of microstructure on the oxidation behavior of microwave plasma synthesized diamond and diamond-like carbon films

Author:

Nimmagadda Rao R.,Joshi A.,Hsu W. L.

Abstract

Oxidation kinetics of microwave plasma assisted CVD diamond and diamond-like carbon (DLC) films in flowing oxygen were evaluated in the temperature range of 500 to 750 °C and were compared with those of graphite and natural diamond. The diamond and DLC films were prepared using CH4/H2 ratios of 0.1, 0.25, 0.5, 1.0, and 2.0%. The films deposited at 0.1% ratio had a faceted crystalline structure with high sp3 content and as the ratio increased toward 2%, the films contained more and more fine crystalline sp2 bonded carbon. The oxidation rates were determined by thermal gravimetric analysis (TGA), which shows that the films deposited at ratios of 2, 1, and 0.5% oxidized at high rates and lie between the rates of natural diamond and graphite. The oxidation rate decreased with lower CH4/H2 ratio and the films deposited at 0.25 and 0.1% exhibited the lowest oxidation rates associated with the highest activation energies in the range of 293–285 kJ/mol · K. The oxidation behavior of microwave plasma assisted diamond films was similar to that of DC plasma assisted CVD diamond films. The results suggest that the same mechanism of oxidation is operational in both DC and microwave plasma assisted diamond films and is probably related to the microstructure and preferred orientation of the crystallites.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3