Atomistic Mechanism of Nucleation and Growth of Voids in Cu Studied by Computer Simulation

Author:

Shimomura Y.,Mukouda I.

Abstract

ABSTRACTA TEM observation of fission neutron-irradiated copper at 300°C shows that the maximum size of stacking fault tetrahedra (sft) observed is 6 nm of edge length which corresponds to a cluster of 280 vacancies and the minimum size of voids is 2.2 nm in diameter which corresponds to a cluster of 470 vacancies. The result suggests that a vacancy cluster whose size is smaller than 300 vacancies grows to sft while a cluster whose size is larger than 500 vacancies relaxes to a void in 300°C-irradiated copper. A computer simulation of molecular dynamics (MD) with an isotropic EAM potential examined this model. It is found that a vacancy cluster that is smaller than 300 vacancy segregates to a (111) platelet and relaxes to an sft. Small vacancy clusters which are generated at damage cascade cores aggregate to spherically distributed vacancies for the size of more than 500 vacancies, and relax to several (111) platelets, which finally form a vacancy (111) polyhedron. Inside a polyhedral vacancy platelet, vacancies are confined and grow to a void at high temperature.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3