Author:
Morris M. A.,Perez J. P.,Darolia R.
Abstract
AbstractThe dislocation configurations produced by room and high temperature compression of <100> oriented single crystals of binary NiAl and in those containing iron and hafnium additions have been analysed and compared to those obtained by hardness indentation and TEM insitu tensile tests. Kinking occurs during room temperature compression such that <100> dislocations are activated in all cases but the iron-containing alloy also exhibited a large density of <111> screw dislocations. The latter however, appear immobile when they are created by hardness indentations of thin foils, while only pile-ups of <100> segments can propagate. Similarly, although different slip systems are present after high temperature compression, only <100> dislocation segments have been confirmed to be mobile after room temperature hardness indentation of these predeformed thin foils. The improvement in ductility observed at room temperature in the predeformed specimens of the binary and the iron containing alloys has been attributed to the increased production of these mobile <100> dislocations.
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献