Author:
Wolf Conrad R.,Ladenburger Andreas,Enchelmaier Rainer,Thonke Klaus,Sauer Rolf
Abstract
ABSTRACTIn this paper we present a novel approach to fabricate single-electron devices utilizing different self-organization and self-alignment effects. Silicon quantum dots (QDs) are obtained employing reactive ion etching (RIE) into a silicon-on-insulator (SOI) substrate with a self-assembled etch mask. Electrodes with nanometer separation are fabricated and aligned to the QDs by means of a controlled electromigration process. The tunneling rates of the devices are defined by the native oxide covering the silicon QDs and can be adjusted by self-limiting thermal oxidation. The devices show clear Coulomb blockade behavior as well as Coulomb staircase features. In some samples also a gate influence is present giving rise to Coulomb diamonds in the differential conductance diagram.
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献