Fabrication and Characterization of a Poly (3-Hexylthiophene) Thin Film Micro-sensor for Hypergolic Vapor Detection

Author:

Shu Huihua,Wan Jiehui,Shu John,Yang Hong,Chin Bryan A.

Abstract

ABSTRACTA passive chemiresistor micro-sensor was investigated for the detection of hydrazine compounds. Hydrazine compounds are a highly toxic and carcinogenic species exhibiting toxic effects in humans at very low levels of exposure. Therefore, a sensor capable of detecting ppb levels of hydrazine compounds is required to insure the safety of personnel. The present study describes the fabrication, testing, and characterization of a low-cost, ultrasensitive Poly (3-Hexylthiophene) (P3HT) thin film-based micro-sensor for the detection of hydrazine compounds. Standard microelectronic manufacturing techniques were used to form a micro-sensor composed of a silicon substrate, interdigitated gold electrodes, and P3HT sensing film. Responses of the micro-sensor to hydrazine compounds at different temperatures and concentration levels are reported. When exposed to 25 ppm hydrazine in nitrogen, the sensor's resistance was measured to change from a few ohms to over 10 Megaohms. The thermal stability of the P3HT micro-sensor and the method to improve thermal stability are also explored. Thermally annealing the P3HT micro-sensor was found to improve thermal stability at high temperatures. Moreover, the sensor exhibits good specificity to hydrazine and does not respond to the presence of NO2 and/or N2O.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3