Evaluation of Rapid Prototyping Technologies for Use in the Production of Art and Artifact Study Copies

Author:

Podany Jerry C.

Abstract

ABSTRACTMany artifacts and works of art are too fragile to be accurately replicated for scholarly study by using traditional methods of plaster or silicone molding techniques. In addition to the potential for loss of surface and fracturing, the use of many modern silicone mold materials may lead to irreversible staining of the original surface.An evaluation of newly developed rapid prototyping technologies and their potential application to this problem was conducted by the J. Paul Getty Museum Department of Antiquities Conservation in conjunction with Laser Design Inc. of Minnesota and Hughes Aircraft Corp. of California.Rapid prototyping technology allows accurate copies to be made without surface contact with the original object. This paper discusses the outcome of an initial investigation into one of these processes, stereolithography. A plaster model was submitted for laser scanning using a point laser probe, programmed for a 3.175 mm (0.125) distance between scan lines. The input was filtered and stored in an STL (stereolithography) format which provides the X,Y and Z coordinates of the A,B,C and normal vectors of a predetermined number of surface triangles. This data was then used to produce a three-dimensional copy.Stereolithography produces hollow or solid threedimensional forms by feeding data that make up cross sectional slices of the object scanned to a focused laser aimed along the Z axis of the potential copy. The laser polymerizes the outer contour of the 'slice' in a thin layer of photopolymer deposited on a stage located below the laser. Following each slice production the stage lowers approximately 19 mm (0.75) below the surface of the liquid polymer reservoir and upon resurfacing positions approx 0.05mm (0.002) lower than its previous position. A “squeegee” gently crosses over the surface resulting in a thin film of polymer available for the production of the next cross section. The laser is then sent the next cross sectional data and the sequence of section building continues.The specific challenge presented by this project was to assure that the surface detail of the copy formed presented acceptable fidelity to the original object (model), avoiding any need for follow up bench work or correction. The advantages, drawbacks and newly developed alternatives to this promising technology are discussed.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference6 articles.

1. Display of 3-D anatomy with stereolithographic models

2. 5.Anon, “Laser Based Methods Speed Up Modelmaking”, in Advanced Materials and Processes, V. 138, no. 1 (July 1990),pp. 51–53.

3. 4.Personal communique with Timothy Thelander of Hughes Aircraft (1992).

4. 6. Nutt K. , Photonics Spectra, 102–104 (Sept. 1991).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3