Effects of Water on the Mechanical Properties of Paper and their Relationship to the Treatment of Paper

Author:

Vitale Timothy

Abstract

ABSTRACTThrough a series of experiments the mechanical properties of paper are explored. Hydrogen bonding is fundamental to the performance of paper and its disruption results in distinctive stress-strain behavior. Stress-strain curves were generated from which tensile strength, Young's modulus, percent stretch, and work (tensile energy absorption) were obtained.It was found that the contribution of the fiber to the mechanical properties of paper is primarily elastic. Fibers are many times stronger than paper. Only fibers which have been severely deteriorated show measurable changes in stress-strain behavior. Fiber deterioration results in characteristically different stress-strain behavior than that which results from disruption of interfiber bonding.Water immersion results in the disruption of interfiber bonds in paper, leaving only 2-3% of dry tensile strength. Interfiber bonds make a profound contribution to the mechanical properties of the paper. Aqueous treatment is shown to be a radical treatment, altering the original dried-in properties of the sheet. The release of structural bonds and dried-in strains during wetting and the subsequent reformation of interfiber bonds during drying are shown to be independent of water purity, be it ultrapure water, tap water, or water containing washing aids such as Ca(OH)2, NaOH, CaCO3 or Na2CO3.The effects of immersion in organic solvents was explored. Solvents have effects on mechanical properties which are approximately proportional to the degree of swelling caused by the solvent. Water, the liquid which caused the greatest swelling of the liquids evaluated, is shown to be the most disruptive liquid followed by methanol and acetone; toluene caused virtually no change.To explore the behavior of interfiber bonds paper was taken through a solvent exchange process. A sample was immersed in water and then taken through separate ethanol and acetone immersions to toluene, and dried. The result was a sheet with little bonding and decreases in all mechanical properties. To explore the surface tension and capillary action effects of water, the solvent-exchanged sheet was re-immersed in water. Upon drying, interfiber bonding was reintroduced which resulted in the regain of mechanical properties lost.A paradigm for the mechanical behavior of paper is developed. Fibers contribute elastic behavior and interfiber bonds are a principal source of plastic behavior.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference70 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3