The Quasioptical Gyrotron, A High-Power, Tunable Source of Millimeter-Wave Radiation

Author:

Fliflet Arne W.,Fischer Richard P.

Abstract

ABSTRACTThis talk will summarize the present state of the art of the quasioptical gyrotron (QOG), an alternative gyrotron configuration which has been under development primarily in the U.S. and Switzerland for heating fusion plasmas in tokamaks and other high-power millimeter-wave applications. The QOG features an open-mirror Fabry-Perot resonator instead of the conventional waveguide cavity used in conventional gyrotrons. This gives the QOG the potential for wide tunability, advantages for high-power operation, and facilitates the use of a depressed collector for spent electron beam energy recovery. An experimental QOG has been tuned from 85 to 130 GHz by varying the applied magnetic field. QOGs have produced peak powers up to 600 kW for 13 μs pulses and 100 kW for 10 ms pulses. Electronic efficiencies up to 22% have been achieved at 85 GHz, and operation with a depressed collector yielded an overall efficiency of 30%. The design of a multi-kW CW QOG tunable from 80 to 120 GHz is discussed.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3