The effect of vanadium micro-alloying on the microstructure of welded joints in high-strength structural steels

Author:

Stornelli Giulia,Tselikova Anastasiya,Schmidt Rolf,Vargas Bryan Ramiro Rodriguez,Zucca Guido,Di Schino AndreaORCID

Abstract

AbstractThe balance between high strength and toughness in high-strength-low-alloy (HSLA) steels can be defined by the thermal cycles in the heat-affected zone (HAZ) of a welded joint, during a double-pass welding process with secondary heating in the inter-critical zone (IC CG HAZ). After multiple heating cycles in the temperature range between Ac1 and Ac3, the steel undergoes a strong loss of toughness and resistance to fatigue, mainly caused by the formation of residual austenite (RA). This study aims to investigate the influence of vanadium addition on the behavior of IC GC HAZ in S355-grade HSLA steel. The welding thermal cycles were simulated, considering five different inter-critical temperatures, between 720 and 790 °C. The addition of vanadium as a micro-alloy to an S355 structural steel was found to increase the mechanical strength of the IC GC HAZ zone of a welded joint without compromising toughness and fatigue resistance. This result is obtained through the generation of a bainitic microstructure with dispersion of fine regions of residual austenite and a fine and uniformly distributed precipitation. Graphical abstract

Funder

Università degli Studi di Perugia

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3