Exploring 2D X-ray diffraction phase fraction analysis with convolutional neural networks: Insights from kinematic-diffraction simulations

Author:

Yue Weiqi,Mehdi Mohommad Redad,Tripathi Pawan K.,Willard Matthew A.,Ernst Frank,French Roger H.ORCID

Abstract

AbstractDeep-learning models are effective for analyzing the complex information in 2D X-ray diffraction (XRD) patterns. Accurately collecting parameters of the material sample is crucial during model training, significantly impacting model performance. In this study, we employ a kinematic-diffraction simulator to generate simulated 2D XRD patterns for Ti–6Al–4V alloy, allowing precise control of sample parameters. These simulated patterns are used to train convolutional neural networks, predicting $$\upbeta$$ β -phase volume fractions. The training data set consists exclusively of 2D XRD patterns with pure $$\upalpha$$ α - or pure $$\upbeta$$ β -phase, while the testing set incorporates patterns with intermediate phase volume fraction. In particular, we investigate how the architectures of the model influence prediction reliability and computational performance. Experimental results reveal that, with appropriate training, the convolutional neural network accurately detects intermediate phase volume fractions even trained with only pure-phase patterns, achieving a mean square error accuracy of $$9.4 \times 10^{-4}$$ 9.4 × 10 - 4 . Graphical abstract

Funder

National Nuclear Security Administration

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3