Abstract
AbstractHaving enabled high-value application capabilities through mass production of flat-panel displays, X-ray imagers, and solar panels, Large-Area Electronics (LAE) holds potential to open new frontiers in wireless applications for the Internet of Things and 5G/6G, by enabling unprecedented spatial control and power efficiency through large size and flexible form factor of radiative apertures. However, this requires boosting operation frequencies from the traditional limits in the range of 10–100’s of mega-Hertz to multi giga-Hertz. In this paper, we discuss critical device metrics, to characterize zinc-oxide (ZnO) thin-film transistor (TFT) operation frequency for both active (for signal amplification) and passive components in LAE-based circuits and systems. We then describe the key structural and material approaches towards recently demonstrated LAE-based giga-Hertz wireless systems employing ZnO TFTs. Bringing LAE to the giga-Hertz regime provides a path towards flexible and meter-scale monolithic integrated wireless systems.
Graphical abstract
Funder
Semiconductor Research Corporation
Defense Advanced Research Projects Agency
Princeton Plasma Physics Laboratory
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献