Abstract
AbstractThis study reports the systematic development of cyclodextrin magnetic biocomposite for the remediation of 4-nitrophenol from wastewater. Magnetic biocomposite was synthesized by co-precipitation of Fe2+ and Fe3+ in the presence of NaOH treated pine-cone followed by cross-linking with cyclodextrin using epichlorohydrin, and achieved by an optimization tool. The experiments were designed and the interaction between the working condition variables (CM-CD mass, MNP mass, time and temperature) on the % iron content and 4-NP adsorption capacity were optimized by response surface methodology approach. The temperature and MNP mass both have positive influences on the % iron content and 4-NP adsorption capacity. Crosslinking of cyclodextrin onto magnetite surface was confirmed by transmission electron microscopy, x-ray diffraction, vibrating scanning magnetometer, Fourier transform infrared spectroscopy and thermal gravimetric analysis). Optimum conditions of MNP-EPI-CD were 2.0 g of CM-β-CD, 0.83 g of MNP at 30 °C for 7.40 h which can remove 15.32 mg/g of 4-nitrophenol.
Graphical abstract
Funder
National Research Foundation South Africa
Vaal University of Technology
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献