Effect of silicon addition on surface morphology and structural properties of titanium nitride films grown by reactive unbalanced direct current-magnetron sputtering

Author:

Shen Y.G.,Liu Z-J.,Jiang N.,Zhang H.S.,Chan K.H.,Xu Z.K.

Abstract

Thin films of Ti1–xy Six Ny were produced on unheated Si(100) substrates by reactive unbalanced dc-magnetron sputtering of titanium and silicon in an Ar–N2 gas mixture. The effects of silicon incorporation on surface morphology and structural properties of these films as well as the influence of postdeposition annealing have been studied. These films were characterized ex situ in terms of their core-level electron bonding configuration by x-ray photoelectron spectroscopy, their microstructure by cross-sectional transmission electron microscopy and x-ray diffraction, their hardness by nanoindentation measurements, and their roughening kinetics by atomic force microscopy (AFM) with the scaling analysis. It was found that a linear increase in the Si concentration of the films was observed with increasing Si target current up to 2 A whereas the reverse trend was seen for the Ti concentration. The films consisted of 15–20-nm-sized TiN crystallites embedded in an amorphous SiNx matrix. They had a hardness of about 32.8 GPa with silicon concentration x = 0.1. The improved mechanical properties of Ti1–xy Six Ny films with the addition of Si into TiN were attributed to their densified microstructure with development of fine grain size and reduced surface roughness. The reduction in grain size has been supported by means of a Monte Carlo simulation that reveals that the average size of TiN grains decreases with the volume fraction of amorphous SiNx approximately according to a power law, showing a reasonable agreement with the experimental results. By applying the height–height correlation functions to the measured AFM images, a steady growth roughness exponent α = 0.89 ± 0.05 was determined for all the films with different Si additions. It was also found that the nanocomposite films were thermodynamically stable up to 800 °C. The effect of thin SiNx layer in stabilizing nanocrystalline TiN structure is also elucidated and explained on the basis of structural and thermodynamic stability.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3