Dislocation Mechanics Simulations of the Bilinear Behavior in Micro- and Nanoindentation

Author:

Elmustafa A.A.,Ananda A.A.,Elmahboub W.M.

Abstract

The hardnesses of electropolished, polycrystalline α-brass, and aluminum were measured as functions of load using Vickers microindentation, and Berkovich nanoindentation. Data were compared with literature data for silver, copper, and tungsten. In all cases, the hardness was observed to increase with decreasing size. Theories in the literature based on strain gradient plasticity and the addition of statistically stored and geometrically stored dislocation densities predict that the square of the hardness should increase linearly with inverse size of the indent. Our data and the literature data agree with this prediction over a limited range of indent diameters represented by microhardness and deep nanohardness data, whereas for the shallow nanohardness data, a second linear behavior is observed. The linear behavior of the microhardness and deep nanohardness data together with the second linear behavior generated by the shallow nanohardness data constituted what we designate a bilinear behavior. An algorithm is developed to calculate the induced shear stresses in a circular Volterra dislocation loop from a line integral of the Peach–Koehler equation using dislocation mechanics and isotropic elasticity. The computed induced shear stresses when plotted versus depth of indentation produced curves that exhibited a bilinear behavior identical to the bilinear behavior resulted from experiments, and the curves collapsed to a single curve for the different materials simulated.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3