Growth of (100) oriented diamond grains by the application of lateral temperature gradients across silicon substrates

Author:

Titus E.,Misra D.S.,Singh Manoj. K.,Tyagi Pawan. K.,Misra Abha,Le Normand F.,Gracio J.,Ali N.

Abstract

Polycrystalline diamond films with a predominant (100) texture were deposited onto silicon substrates using hot-filament chemical vapor deposition. During film deposition, different temperature gradients were created and imposed laterally across the substrate materials. Films grown under a gradient of 100 °C cm−1 displayed large (100) oriented grains. No crystallite (100) orientation was observed in the as-grown films prepared without a temperature gradient. It was observed that the diamond grain size varied as a function of the gradient. The lower gradient resulted in smaller grains and vice versa. Furthermore, the size of the grains was a function of the deposition time. The orientation of the diamond grains changed gradually across the substrate from (100) to (110) orientation as we scanned from the high-temperature to the low-temperature zone. The films were characterized using x-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and Fourier transform infrared (FTIR) spectroscopy. XRD showed strong (400) reflections in the oriented samples. SEM results indicated the presence of smooth diamond surfaces consisting of predominantly (100) oriented platelets. As the (100) oriented diamond grains were grown on top of the (100) oriented silicon substrates, the faces were mostly aligned parallel to the substrate surface resulting in the deposition of a smooth diamond surface. AFM observations revealed the presence of steps located at the boundaries of the oriented grains. FTIR results showed the characteristic difference in hydrogen bonding in the oriented samples and gave useful information about mechanisms responsible for the orientation. Quantitative analysis was carried out to measure the H content in the films, and it was found that the oriented films contained less hydrogen. Our findings suggest that high saturation of carbon and a concentration gradient of sp3 CH2 species can be the key factor in the oriented growth of (100) diamond grains.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3