Doped Self-Aligned Metallization for Solar Cells

Author:

Addo Ernest A.,Shah S. Ismat,Opila Robert,Barnett Allen M.,Allison Kevin,Sulima Oleg

Abstract

Metal contacts using doped self-aligning metallization to [100] and [111] p-type silicon were investigated. Contacts formed in this manner allow the formation of a pn-junction and provide front metallization for photovoltaic applications. Formulated screen-printable thick films were annealed above Ag/Si eutectic temperature of 830 °C. The annealing process resulted in a junction depth of 0.3–1.1 μm with improved Ag/Si metal contacts due to the reduction of parasitic native oxide layer via the use of a wetting agent. The technique inhibits shunts (high conductivity paths through the solar cell pn-junction caused by excessive metal penetration) due to limited solubility of Ag in Si. The technique also reduces series resistance (a parasitic resistance due to surface states that also limit solar cell performance) due to a robust thermal processing window. The use of magnesium (Mg) as a wetting agent in the thick film Ag matrix was explored. We observed a correlation between increased wetting and improved dark saturation current J02 in the absence of a pre-existing junction.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SEM and specific contact resistance analysis of screen-printed Ag contacts formed by fire-through process on the shallow emitters of silicon solar cell;Journal of Materials Science: Materials in Electronics;2008-12-10

2. Photovoltaics literature survey (no. 35);Progress in Photovoltaics: Research and Applications;2005-01

3. Photovoltaics literature survey (no. 33);Progress in Photovoltaics: Research and Applications;2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3