Factors inducing degradation of properties after long-term oxidation of Si3N4–MoSi2 electroconductive composites

Author:

Medri V.,Bellosi A.

Abstract

The effects of heat treatments on strength and electrical conductivity after 100 h in air up to 1500 °C were evaluated on hot-pressed Si3N4–35 vol% MoSi2 composite. The long-term oxidation involves microstructural changes at the material surface and subsurface, such as the formation of oxide scales and of a multilayered microstructure. At T ⩾ 1200 °C, a glassy silicate phase is formed, which embeds cristobalite grains and highly textured Y2Si2O7 crystals. At the same time, MoSi2, assisted by oxygen, reacts with Si3N4 forming Mo5Si3, Si2N2O, and SiO2. The decrease of the room temperature flexural strength reached about 25% in the samples exposed at 1000 °C for 100 h, compared to the as-produced materials. On the contrary, after treatments at higher temperatures, the strength decrease is lower at 1500 °C, the residual strength is 836 ± 62 MPa with a strength decrease of about 8%. The surface oxide scale is an insulator and, consequently, the electrical resistivity of the composite rises from 10-3 to 107–109 Ωcm.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3