Young's modulus measurements on ultra-thin coatings

Author:

Chudoba T.,Griepentrog M.,Dück A.,Schneider D.,Richter F.

Abstract

The determination of the mechanical properties of ultra-thin coatings has become more and more important because of the increasing number of applications using such films. However, an accurate mechanical testing of coatings with a thickness down to some nanometers is still a challenge, despite the improvements of existing measurement techniques. Nanoindentation is an often used mechanical nanoprobe. Using the conventional test method with a sharp Berkovich indenter, the problem of the influence of the substrate on the results arises with decreasing film thickness. Therefore, it is nearly impossible to measure the modulus of films with a thickness less than 100–200 nm. The problem can be overcome by using spherical indenters in combination with an analytical solution for the Hertzian contact of coated systems. It allows a separation of film and substrate properties from the load–displacement curve of the compound. Indentation measurements were done at a 44 nm TiN film and at diamondlike carbon coatings in the thickness range between 4.3 nm and 125 nm on Si substrates. Several corrections were applied to obtain wholly elastic force–displacement curves with high accuracy. It is shown in more detail how zero point and thermal drift corrections are used to obtain statistical depth errors below 0.2 nm. Laser-acoustic measurements based on ultrasonic surface waves were chosen as a second method, which also measures the Young’s modulus in this thickness range. Although the indentation technique is a local probe and the laser-acoustic technique gives an integrated value for a surface range of some millimeters, the results agree well for the investigated samples. In contrast, it was impossible to get the correct Young’s modulus results by conventional indentation measurements with Berkovich indenter, even for ultra-low loads.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3