Hydrothermal Synthesis of Undoped and Mn-Doped ZnGa2O4 Powders and Thin Films

Author:

Loeffler Lars,Lange Fred F.

Abstract

Undoped and manganese-doped zinc gallate powders and thin films have been synthesized via the hydrothermal route from aqueous solutions at a pH between 9.5 and 12.5. The chemical composition and the crystal size of the synthesized powder have been studied as a function of pH, temperature, and the composition of the precursor solution, such as the type of hydroxide used and the zinc, gallium, and lithium content. Specimens have been analyzed by x-ray diffraction, scanning and transmission electron microscopy, energy-dispersive x-ray spectroscopy, thermogravimetry, and inductively coupled plasma atomic emission spectroscopy. It is shown that crystallite size and chemical composition strongly depend on the solubility of the gallium species within the solution, which appears to determine the number of ZnGa2O4 nuclei per unit volume. Crystals of a few micrometers in size can be synthesized from solutions where Ga is very soluble (e.g., pH ≥ 11), whereas when Ga is not very soluble, the synthesis product is nanocrystalline. Thermogravimetric studies indicate that a considerable amount of OH is incorporated at the oxygen sites (every 5th to 10th site). Hydrothermal growth of heteroepitaxial zinc gallate thin films has been carried out on (111) MgAl2O4 and (00.1) LiNbO3 substrates. Heteroepitaxy is based on a coincident pattern of oxygen sites in the two structures; that is, (111)ZGO ∥ (111)MAO and (111)ZGO ∥ (00.6)LNO for the out-of plane orientation and (1¯10)ZGO ∥ (1¯10)MAO and (1¯10)ZGO ∥ (1¯10)LNO for the in-plane orientation, respectively. The thin films cover the substrate completely and consist of oriented grains of up to several hundred nanometers in size. In general, the films are twinned with two variants (in separate grains) that are related by a 60° rotation around [111]. This twinning can only be suppressed at high pH and high temperature and only on the MgAl2O4 substrates.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3