Author:
Baertsch Chelsey D.,Jensen Klavs F.,Hertz Joshua L.,Tuller Harry L.,Vengallatore Srikar T.,Spearing S. Mark,Schmidt Martin A.
Abstract
Micromachined fuel cells are among a class of microscale devices being explored for portable power generation. In this paper, we report processing and geometric design criteria for the fabrication of free-standing electrolyte membranes for microscale solid-oxide fuel cells. Submicron, dense, nanocrystalline yttria-stabilized zirconia (YSZ) and gadolinium-doped ceria (GDC) films were deposited onto silicon nitride membranes using electron-beam evaporation and sputter deposition. Selective silicon nitride removal leads to free-standing, square, electrolyte membranes with side dimensions as large as 1025 μm for YSZ and 525 μm for GDC, with high processing yields for YSZ. Residual stresses are tensile (+85 to +235 MPa) and compressive (–865 to -155 MPa) in as-deposited evaporated and sputtered films, respectively. Tensile evaporated films fail via brittle fracture during annealing at temperatures below 773 K; thermal limitations are dependent on the film thickness to membrane size aspect ratio. Sputtered films with compressive residual stresses show superior mechanical and thermal stability than evaporated films. Sputtered 1025-μm membranes survive annealing at 773 K, which leads to the generation of tensile stresses and brittle fracture at elevated temperatures (923 K).
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
134 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献