Study of the Uranium Heterogeneous Diffusion through Crystalline Rocks and Effects of the “Clay-Mediated” Transport

Author:

Alonso U.,Missana T.,García-Gutiérrez M.,Patelli A.,Ravagnan J.,Rigato V.

Abstract

ABSTRACTRock matrix diffusion is one of the possible mechanisms for radionuclide retardation in a deep geological high-level radioactive waste repository, and it is usually considered that radionuclides diffuse as solutes through the rock. Nonetheless, the potential effects that clay, from the bentonite barrier, may induce on the radionuclides migration should be taken into account. Furthermore, transport models generally assume that the whole mineral surface is accessible to transport, whereas transport is highly conditioned by the heterogeneous mineral distribution, since different minerals may act as preferential pathways, while others may present higher sorption capability. It is therefore necessary to determine the actual surface area accessible to transport.The aim of the present work is the identification of the uranium preferential pathways to the granite, both in presence or absence of bentonite clay. Results showed that uranium as solute diffused in specific mineral areas, indicating that the actual surface area accessible to matrix diffusion, and/or sorption on the surface, is significantly lower than the whole mineral surface. By the other hand, the uranium in presence of the clay was randomly distributed on the surface, and penetrated into the granite mainly through “defects” (as fractures or grain boundaries); its migration being enhanced on specially fractured or disturbed areas.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3