Methane Hydrates: An Abundance of Clean Energy?

Author:

Rath B.B.

Abstract

The discovery that gas hydrates (also called clathrate hydrates) can crystallize (Figure 1) as a solid by the combination of water and several types of gases exposed to low temperatures and elevated pressure goes back to the 1800s. French researchers were the frst to report the formation of methane, ethane, and propane hydrates.1 Results of these studies remained as scientifc novelties until the mid-1930s, when it was discovered in Germany that gas hydrates forming as solids above 0°C in gas pipelines blocked the fow of natural gas.2 This observation initiated a furry of activities both in Europe and in the United States to fnd various inhibitors to prevent hydrate formation in gas transmission lines. During the mid-1960s, it was recognized that nature, over millions of years, has deposited vast amounts of methane hydrates along most of the continental margins in the ocean sediments, as well as along the permafrost regions in Alaska, Canada, and Russia.3 Figure 2 shows the presence of methane hydrate deposits in the ocean sediments and in the permafrost regions of the world. These deposits are byproducts of microbial decomposition of organic matter or of Earth's geothermal heating distributed worldwide where temperature and pressure are suitable for hydrate formation. The distribution of organic carbon in Earth's crust as methane

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

Reference5 articles.

1. 4. Collett T.S. , in “1995 National Assessment of United States Oil and Gas Resources on CD-ROM: U.S. Geological Survey Digital Data Series 30,” D.L. Gautier, G.L. Dolton, K.I. Takahashi, K.L. Varnes, Eds. (1995).

2. Formation of Gas Hydrates in Natural Gas Transmission Lines

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3