Environmental Performance Enters Construction Materials

Author:

Bonfield Peter

Abstract

The environmental sustainability of materials used in construction applications is driving a requirement for the quanti-fcation of performance attributes of such materials. For example, the European Union (EU) Energy Performance in Buildings Directive will give commercial buildings an energy rating when rented or sold. The Code for Sustainable Homes launched by the U.K. Government's Department for Communities and Local Government (CLG) in January 2007 sets out the requirement for all new homes to be carbonneutral by 2016. In addition, homes in the United Kingdom will need to signifcantly reduce water consumption from today's average 160 liters (1) per person per day to less than 801 per person per day. Similarly stringent targets are required for waste, materials, and other factors. Such environmental and energy standards are complementing characteristics such as strength, stiffness, durability, impact, cost, and expected life with factors such as “environmental profle,” “ecopoints” (a single unit measurement of environmental impact arising from a product throughout its lifecycle that is used in the United Kingdom), “carbon footprint” (amount of CO2 produced for the lifecycle of the item), “recycled content,” and “chain of custody” (a legal term that refers to the ability to guarantee the identity and integrity of a specimen from collection through to reporting of test results).

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

Reference5 articles.

1. 1. The European Parliament and The Council of the European Union, On the Energy Performance of Buildings (Directive 2002/91/Ec, December 16, 2002; www.dlag.org.uk/medla/18832/epd_fnal.pdf) (accessed January 2008).

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3