Mid-infrared silicon photonics for sensing applications

Author:

Mashanovich Goran Z.,Milosevic Milan M.,Nedeljkovic Milos,Cox David,Passaro Vittorio M. N.,Chong Harold M. H.,Soref Richard

Abstract

ABSTRACTThe mid-infrared wavelength region offers a plethora of possible applications ranging from sensing, medical diagnostics and free space communications, to thermal imaging and IR countermeasures. Hence group IV mid-infrared photonics is attracting more research interest lately. Sensing is an especially attractive area as fundamental vibrations of many important gases are found in the 3 to 14 μm spectral region. To realise group IV photonic mid-infrared sensors several serious challenges need to be overcome. The first challenge is to find suitable material platforms for the mid-infrared. In this paper we present experimental results for passive mid-infrared photonic devices realised in silicon-on-insulator (SOI), silicon-on-sapphire (SOS), and silicon on porous silicon (SiPSi). Although silicon dioxide is lossy in most parts of the mid-infrared, we have shown that it has potential to be used in the 3-4 μm region. We have characterized SOI waveguides with < 1 dB/cm propagation loss. We have also designed and fabricated SOI passive devices such as MMIs and ring resonators. For longer wavelengths SOS or SiPSi structures could be used. An important active device for long wavelength group IV photonics will be an optical modulator. We present relationships for the free-carrier induced electro-refraction and electro-absorption in silicon in the mid-infrared wavelength range. Electro-absorption modulation is calculated from impurity-doping spectra taken from the literature, and a Kramers-Kronig analysis of these spectra is used to predict electro-refraction modulation. We have examined the wavelength dependence of electro-refraction and electro-absorption, and found that the predictions suggest longer-wave modulator designs will in many cases be different than those used in the telecom range.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3