Deposition of Calcium-Silicate-Hydrate Gel on Rough Surface of Granite from Calcium-rich Highly Alkaline Plume

Author:

Niibori Yuichi,Komatsu Kyo,Mimura Hitoshi

Abstract

ABSTRACTCement-based materials used in the construction of the repository for high/low level radioactive wastes may produce a highly alkaline calcium-rich groundwater (plume). The Ca ions react with soluble silicic acid, depositing calcium-silicate-hydrate (CSH) gel on the surfaces of the groundwater flow-paths and decreasing the permeability of the bedrock. Such a decrement of permeability may play a role in retarding the migration of radionuclides. In this study, the deposition behavior in a fracture was experimentally examined by using a micro flow-cell consisting of silicon plate (including a slit (60 mm×5 mm, or 60 mm×2 mm)) and granite-chip. The initial equivalent-aperture based on the square law was estimated in the range of 26 μm to 45 μm from the flow test of pure water.In the experiments, a Ca(OH)2 solution of 6.36 mM (pH: 12.2 to12.5, including NaOH) was continuously injected into the flow system at a constant flow rate of 1 or 2 ml/h. The solution flowed on the surface of the granite-chip. In this study, we prepared two kinds of chips that differed in the treatment of the surface. One chip was roughly ground with #2000 sandpaper (hereinafter referred to as rough surface) and another was polished to mirror-like surface. As a result, on the rough surface the deposits of CSH gel appeared along flow-channels across mineral grain-boundaries, while the deposits on the mirror-like surface were relatively uniform. Furthermore, the permeability in the case of rough surface became smaller than that in the case of mirror-like surface, showing the repeats of rapid decrement and increment due to the relatively large roughness of the surface. In order to estimate the decrement degrees of permeability, a simple, one-dimensional mathematical model is proposed in this study.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference7 articles.

1. Deposition rates of polysilicic acid with up to 10−3M calcium ions

2. 2. FEPC (Federation of Electric Power Companies of Japan) and JNC (Japan Nuclear Cycle development institute), JNC TY1400 2005-013, FEPC TRU-TR2-2005-02 (2005).

3. 5. Komatsu K. , Usui H. , Kadowaki J. , Niibori Y. , and Mimura H. , Proc. of 16PBNC (16th Pacific Basin Nuclear Conference), Paper No. P16P1167 (2008).

4. Relationship among Performance of Geologic Repositories, Canister-Array Configuration, and Radionuclide Mass in Waste

5. 1. Atkinson A. , AERE-R 11777, UKAEA (1985).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3