Weak Bonding Effect on the Ultralow Thermal Conductivity of Germanium Nanodot Arrays in Silicon

Author:

Gillet Jean-Numa

Abstract

ABSTRACTThe thermoelectric figure of merit ZT depends on the thermal conductivity inverse. uperlattices with periodic thin layers were studied to obtain ZT > 1 due to phonon confinement between their layers. Unfortunately, their synthesis with ZT higher than 1 is hazardous due to lattice mismatches forming dislocations and cracks. Nanowires with low dimensionalities were also proposed. However, as the superlattices, they decrease the thermal conductivity in only one propagation direction. In experiments, these one-dimensional insulating materials usually fail to beat the lowest limit of amorphous Si (+/- 1 W/m/K). In this theoretical study, three-dimensional Ge quantum dot arrays in Si are proposed to obtain an extreme thermal-conductivity reduction. Two decrease effects are shown from a molecular supercrystal model. First, low phonon group velocities are computed by lattice dynamics. Second, near-field scattering is exalted assuming weak interface bonding. This prediction can lead to a significant ZT increase. Indeed, a thermalconductivity global minimum λ* = 0.009 W/m/K is predicted for a Si/Ge supercrystal with nanodot spacing of +/- 30 nm and Ge concentration of +/- 12.5 Ge at.%. This ultralow λ* is computed at 300 K assuming that all Ge nanodots are weakly bonded and scatter the phonons at the Si-Ge interfaces in the geometrical limit. Thermal conductivity evolution is analyzed with respect to the weakly-bonded Ge nanodot density.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3