The Essence and Efficiency Limits of Bulk-Heterostructure Organic Solar Cells

Author:

Alam M.,Ray B.,Khan M.,Dongaonkar S.

Abstract

Abstract:Since its introduction in early 1990s, bulk-heterojunction organic photovoltaic solar cell (BHJ-OPV) has promised high-efficiency at ultra-low cost and weight, with potential for non-traditional applications such as building-integrated PV. There is a widespread presumption, however, that the complexity of morphology makes carrier transport in OPV irreducibly complicated, and possibly, beyond predictive modeling. In this paper, we use elementary and intuitive arguments to derive the fundamental thermodynamic as well as morphology-specific practical limits of BHJ-OPV efficiency. We find that constraints of the percolation threshold and trade-off among short-circuit current, open circuit voltage, and fill factor make substantial improvement in OPV efficiency difficult. We posit that future improvement in OPV will rely not on morphology engineering, or reducing the polymer bandgap, but on increasing both the effective μ × τ product and the cross-gap between donor/acceptors. Even if the OPV fails to achieve the highest efficiency anticipated by the thermodynamic limit, its novel form factor, lightweight, and transparency can make it a commercially viable option for many applications.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Towards high efficiency thin film solar cells;Progress in Materials Science;2017-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3