Harmonic Excitation of Surface Acoustic Waves on Gallium Nitride Thin Films for Biological and Chemical Sensor Applications

Author:

Justice J.,Rodak L. E.,Lee K.,Hornak L. A.,Korakakis D.

Abstract

ABSTRACTGallium nitride (GaN) is a robust piezoelectric semiconductor with excellent thermal and chemical stability, making it an attractive material for surface acoustic wave (SAW) sensors operating in high temperature and harsh environments. The sensitivity of SAW devices is proportional to the square of the operating frequency. Therefore, high operating frequencies into the GHz regime are desirable for SAW sensors. For GaN, this requires sub-micron interdigital transducers (IDTs) when devices are designed to operate at the fundamental Rayleigh mode frequency. The necessity for sub-micron IDTs can increase fabrication costs and complexity. By designing SAW devices to operate at harmonic frequencies, GHz operation can be realized with relatively large IDTs, resulting in simpler and more cost effective solutions for GaN based SAW sensors. Devices have previously been designed to operate at the 5th and higher harmonics on lithium niobate, but there are no reports of using this technique on GaN in the literature. In this study, GaN thin films have been grown via metal organic vapor phase epitaxy on sapphire substrates. SAW devices designed to operate at the fundamental frequency and higher harmonics have been fabricated and measured. Operating frequencies greater than 2 GHz have been achieved using IDTs with 5 μm fingers. In addition, reduction of electromagnetic feedthrough around the 5th and 7th harmonic is demonstrated through varying ground electrode geometries.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3