Poly(lactide-co-glycolide)-Hydroxyapatite Composites: The Development of Osteoinductive Scaffolds for Bone Regenerative Engineering

Author:

Deng Meng,Cushnie Emily K.,Lv Qing,Laurencin Cato T.

Abstract

ABSTRACTRegenerative engineering represents a new multidisciplinary paradigm to engineer complex tissues, organs, or organ systems through the integration of tissue engineering with advanced materials science, stem cell science and developmental biology. While possessing elements of tissue engineering, regenerative medicine, and morphogenesis, regenerative engineering is distinct from these individual disciplines since it specifically focuses on the integration and subsequent response of stem cells to biomaterials. One goal of regenerative engineering is the design of materials capable of inducing associated cells toward highly specialized functions. For example, the interaction of cells with calcium phosphate surfaces has proven to be an important signaling modality in promoting osteogenic differentiation. A biodegradable polymer-ceramic composite system has been developed from poly(lactide-co-glycolide) and in situ synthesized hydroxyapatite based on the three-dimensional sintered microsphere matrix platform. We have systematically optimized scaffold physico-chemical, mechanical, and structural properties for bone tissue regeneration applications by varying several parameters such as solution pH, polymer:ceramic ratio, sintering time and sintering temperature. The bioactivity of composite scaffolds is attributed to their ability to deliver calcium ions to surrounding medium and allow for reprecipitation of calcium phosphate on the scaffold surface. Furthermore, the composite scaffolds have demonstrated increased loading capacity of osteoinductive growth factor (BMP-2) and a more sustained release profile due to a greater number of adsorption sites provided by the ionic calcium and phosphate groups as well as a larger matrix surface area. In vitro cell studies were performed to investigate the efficacy of this composite system to induce osteogenic differentiation of human adipose-derived stem cells. Cells cultured on the ceramic containing scaffolds exhibited significantly higher expression of osteoblastic markers and greater extracellular matrix mineralization than non-ceramic containing scaffolds, indicating the potential for the ceramic phase to promote osteogenic differentiation. In addition, loaded BMP-2 retained its bioactivity as a mitogen and osteoinductive agent during the differentiation of adipose-derived stem cells into mature osteoblasts. In vivo evaluation using a critical-sized ulnar defect model in New Zealand white rabbits demonstrated the ability of composite scaffolds to support cellular infiltration throughout the scaffold pore structure and vascularization of new tissue, as well as facilitate formation of newly mineralized bone tissue. The work described herein provides strong evidence for the potential of polymer-ceramic composite scaffolds to function as osteoinductive bone graft substitutes, and paves the way for future development of advanced tissue-inducing materials.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Recent Trends in the Development of Polyphosphazenes for Bio-applications;Regenerative Engineering and Translational Medicine;2022-09-26

2. Polymeric Electrospinning for Musculoskeletal Regenerative Engineering;Regenerative Engineering and Translational Medicine;2016-03-30

3. Advanced bioactive and biodegradable ceramic biomaterials;New Functional Biomaterials for Medicine and Healthcare;2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3