Ferroelectricity, ferromagnetism, and magnetoelectric coupling in highly textured thin films of the multiferroic Pb(Fe0.5Nb0.5)O3

Author:

Raymond-Herrera Oscar,Góngora-Lugo Paola,Ostos Carlos,Curiel-Alvarez Mario,Bueno-Baques Dario,Machorro-Mejia Roberto,Mestres-Vila Lourdes,Font-Hernández Reynaldo,Portelles-Rodriguez Jorge,Siqueiros Jesús M.

Abstract

ABSTRACTA study of the ferroelectric and magnetic properties and of the magnetoelectric coupling effects of Pb(Fe0.5Nb0.5)O3 (PFN) thin films, grown on SrRuO3/Si [(100) or (111)] substrates by the rf-magnetron sputtering technique, is presented. Structural, morphological, and compositional characterization was realized using the XRD, AFM, XPS, and TEM techniques. Highly textured single phase films with different thickness (from 45 to 270 nm) were successfully grown without Fe2+ presence. A vertically [110] oriented grainy structure was observed. Polarization vs. electric field (P-E) hysteresis loops exhibit excellent and almost constant values of the maximum (∼ 60 μC/cm2) and remanent (∼ 22 μC/cm2) polarizations in the temperature range from 4 K to room temperature; small values of the coercive field, characteristic of soft ferroelectric materials, are observed in these samples. Measurements of the zero-field cooled (ZFC) and field cooled (FC) magnetization behavior and magnetic (M-H) hysteresis loops were realized at different temperatures between 5 and 300 K. Proof of the existence of ferromagnetic order in the low temperature region (below to 50 K) is discussed and reported for the first time. Values of the maximum (∼ 3 emu/g) and remanent (∼ 1.5 emu/g) magnetizations were obtained. dc magnetic field dependence of the ferroelectric hysteresis loops are shown as evidence of the magnetoelectric coupling.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3