Copper (II) Phthalocyanine Based Field Effect Transistors as Total Dose Sensors for Determining Ionizing Radiation Dose

Author:

Raval Harshil N.,Rao V. Ramgopal

Abstract

ABSTRACTChanges in the material properties of copper (II) phthalocyanine (CuPc) thin-films were studied upon exposure to increasing dose of ionizing radiation using photoluminescence spectrum. We observe generation of new energy states below the band gap upon exposure to ionizing radiation. Organic electronic devices – CuPc based resistor and an organic field effect transistor (OFET) – are proposed in this work as total dose sensors for ionizing radiation. We observe an increase in the conductivity of CuPc thin-films with increasing dose of ionizing radiation. To overcome the possibility of changes/degradation in the electrical properties of CuPc thin-films upon interaction with various gases and moisture in the environment, a passivation layer of silicon nitride, deposited by hot-wire CVD process is proposed. Effect of ionizing radiation on the electrical properties of thin-films of CuPc has been studied. We observe a 170% increase in the resistance of the thin-film for a total of 50 Gy radiation dose using Cobalt-60 (60Co) radiation source. Moreover, significant changes in the electrical characteristics of an OFET, with CuPc as an organic semiconductor, have been observed with increasing doses of ionizing radiation. Experiments with an OFET (W/L = 19350 μm / 100 μm and tox = 150 nm) as a sensor resulted in a ∼100X change in the OFF current for a total of 50 Gy dose of ionizing radiation exhibiting a sensitivity of ∼1 nA/Gy. Moreover, implementing a reader circuit, shift in the threshold voltage of the OFET at 1e-7 A drain current displayed a sensitivity of 80 mV/Gy for a total of 50 Gy dose of ionizing radiation. CuPc based organic electronic devices have advantages as sensors because of their low-cost fabrication, large area coverage on flexible substrates, etc.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Radiation Sensor Design for Mitigation of Total Ionizing Dose Effects;Lecture Notes in Electrical Engineering;2022-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3