Modeling and Characterization of Silicon Nanowire Networks for Thermoelectric Conversion

Author:

Norris Kate J.,Lohn Andrew J.,Coleman Elane,Tompa Gary S.,Kobayashi Nobuhiko P.

Abstract

ABSTRACTWe report the growth of silicon nanowires by plasma assisted metal organic chemical vapor deposition. Silicon nanowires grew as three-dimensional networks in which electrical charges and heat can travel over the distance much longer than the mean length of the constituent nanowires. We studied the dependence of thermoelectric properties on two factors; nominal doping concentrations and geometrical factors within the silicon nanowire networks. The silicon nanowire networks show Seebeck coefficients comparable with that of bulk silicon for a given nominal doping concentration, allowing us to control Seebeck coefficients by tuning the doping concentrations. Rather than studying single nanowires, we chose networks of nanowires formed densely across large areas required for large scale production. We also studied the role played by intersections where multiple nanowires were fused to form the nanowire networks. Structural analysis, transport measurement, and modeling based on finite-element analysis were carried out to obtain insights of physical properties at the intersections. Understanding these physical properties of three-dimensional nanowire networks will advance the development of thermoelectric devices.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3