Molecular Dynamics Based Study on Ductility Enhancement Effect of Nano-scale Void in Fine-grained Metallic Materials

Author:

Taniguchi Shin,Kameda Toshihiro,Fujita Toshiyuki

Abstract

ABSTRACTIn fine-grained metallic materials, the dominant grain boundary (GB) process, such as dislocation emission, dislocation absorption, and dislocation pile-up, causes non-uniform deformation, which results in high yield stress and low ductility. When a nano-scale void is introduced, the dislocation activity enhancement around the void could inhibit GB fracture and enhance ductility. In this study, by considering nanocrystalline Cu models, the influence of an intragranular nano-scale void on the fracture process has been investigated through molecular dynamics simulation. The dependence of ductility enhancement on the grain size and void size has especially been discussed at low and room temperatures. Sufficient dislocation activity enhancement accompanied by optimal void growth causes a fracture mode transition from GB fracture to transgranular fracture. While the ductility enhancement strongly depends on the void size at low temperature, it depends on the grain size at room temperature. The strong dependence of ductility enhancement on the temperature is found in the case of relatively small grains.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3