Very Low Pressure Oxidation of Si and Ge Surfaces

Author:

Baikie Iain D.

Abstract

ABSTRACTAlthough the oxidation of Si(111) 7×7, Ge(111) 2×8 surfaces are relatively well understood very little work has been performed at sub monolayer coverage. We have utillsed a custom-built high resolution Kelvin probe to follow the changes in work function, and changes in band-bending and surface state occupancy via Surface Photovoltage Spectroscopy (SPV). The Kelvin probe Is an Ideal tool for such analysis due to Its extremely high surface sensitivity, equivalent to 4×1010 molecules/cm2, or 0.01% of the available sites.We observe a very rapid initial adsorption phase, which has not been found by other surface probes, e.g., AES, EELS, etc, corresponding to the formation of an elementary dipole layer. During this phase the Increase In the effective electron affinity with oxygen uptake achieves a maximum of 1V at 0.3 monolayer (ML), on SI(111) at 300 K. We report, for the first time, SPV spectra of SI(111), at 100 K, indicating quenching of a band of surface states centered around the fermi-level, quenching Is completed at the max-Imum of the work function change.The second adsorption phase, involving oxygen penetration through the surface layer and incorporation Into the lattice, commences at 0.25 ML for Si(111) at 300 K. a much earlier stage than previously reported. Further. we find evidence of a metastable SiO2 precursor at coverages below 1 ML. The dipole layer formation (and breakup) is shown to be very sensitive to both temperature and amount of surface Carbon contamination. The second phase also Involves a substantial reduction In band-bending to nearly flat bands at 2 ML, accounting for 20% of the work function change In the case of SI and almost 90% for Ge.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference19 articles.

1. 4. Baikie I.D. , Vanderbosch E. , Meyer J.A. and Estrup P.J.Z. , Rev. Scd. Instrum., (in press).

2. 14. Wierenga P.E. , Ph.D. thesis, University of Twente, p 66 (unpublished).

3. Low‐Energy Electron‐Diffraction and Surface Conductance Studies of Surface Reaction of Germanium with Oxygen

4. Surface states on clean silicon

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3