Movpe Growth of High Quality AlxGa1−xN/GayIn1-yN (x>0, y<1) Heterostructures for Short Wavelength Light Emitter

Author:

Akasaki I.,Amano H.

Abstract

ABSTRACTHigh-quality AlGaN/GaN and AlGaN/GalnN DHs were fabricated by MOVPE using low-temperature deposited AlN buffer layer. We applied the newly designed dual-flow-channel reactor, by which high-quality and well-controlled AlGaN and GalnN alloys and their heterostructures have been grown. AlGaN/GaN-DH shows low-threshold stimulated emission by optical pumping at room temperature for both edge and surface modes. The peak wavelength of stimulated emission for edge mode was 369.5nm. The peak wavelength of stimulated emission was affected by the strain due to heterostructure as well as the many body effect under high excitation. The wavelength for stimulated emission can be widely changed by using GalnN as the active layer. AlGaN/GalnN DH with InN molar fraction of the active layer of 0.09 shows room temperature low-threshold stimulated emission for edge mode by optical pumping with peak wavelength of 402.5nm. A few mW-class symmetrical AlGaN/GaN DH LED and anti symmetrical AlGaN/GalnN/GaN DH LED using low energy electron beam irradiation (LEEB1) treated Mg-doped P-AlGaN cladding layer were fabricated. These results show that column-Ill nitrides are promising for the realization of practical short wavelength LED and LD.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effect of N2microplasma treatment on initial growth of GaN by metal–organic molecular beam epitaxy;Japanese Journal of Applied Physics;2016-07-13

2. Fascinated Journeys into Blue Light;International Journal of Modern Physics B;2015-12-17

3. Nobel Lecture: Fascinated journeys into blue light;Reviews of Modern Physics;2015-10-05

4. Blue Light: A Fascinating Journey (Nobel Lecture);Angewandte Chemie International Edition;2015-05-27

5. Blaues Licht: eine faszinierende Entdeckungsreise (Nobel-Aufsatz);Angewandte Chemie;2015-05-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3