Morphology of Rigid-Rod Molecular Composites: An Overview

Author:

Krause Stephen J.

Abstract

ABSTRACTRigid-rod molecular composites are a new class of high performance structural polymers which have high specific strength and modulus and also high thermal and environmental resistance. A rigid-rod, extended chain polymer component is used to reinforce a matrix of a ductile polymer with the intent of achieving a “composite” on the molecular level. After synthesis, the key to producing a molecular composite is to control morphology to disperse the reinforcing rod molecules as finely as possible in the matrix polymer. Individual rod molecules or bundles of molecular rods must have dimensions which result in a high ratio of length to width (aspect ratio) for efficient reinforcement. To achieve this, the reinforcing rod component must not phase separate at any stage of processing. Morphological characterization techniques, which can measure the orientation and dispersion (or, conversely, the degree of phase separation) of rod molecules provide the tools for correlating theoretically predicted and experimentally observed mechanical properties. Various morphological techniques which have been applied to molecular composite systems will be reviewed, including wide angle x-ray scattering and scanning and transmission electron microscopy. Structure-property correlations for molecular composite systems will be discussed with regard to models for mechanical properties. Application of new morphological techniques will also be discussed.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference24 articles.

1. 24. Wierschke S.G. , to be published in this volume MRS Proceedings.

2. 23. Donaldson S. , private communication.

3. Raman spectroscopy of stressed high modulus poly(p-phenylene benzobisthiazole) fibres

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3