Electrical Properties of Boron-Doped μc-Si:H Prepared by Reactive Magnetron Sputtering from c-Si Targets

Author:

Turner W. A.,Williams M. J.,Chen Y. L.,Maher D. M.,Lucovsky G.

Abstract

ABSTRACTWe discuss the preparation and electrical properties of B-doped μc-Si:H thin films prepared by reactive magnetron sputtering in a hydrogen containing ambient. The B-concentration, and hence the dark conductivity, have been varied by controlling the rf power supplied to two sputtering targets, one, of undoped c-Si, and the other of B-doped c-Si. Films deposited from either target alone display dark conductivity activation energies of approximately 0.5 eV due to Fermi level pinning by native donorlike defects and B-doping for samples prepared from the undoped and B-doped targets, respectively. Films deposited by simultaneously sputtering undoped and B-doped targets display activation energies which first increase to approximately 0.7 eV and then decrease as the fraction of power supplied to the B-doped target is increased. For the combination of deposition parameters used, the cross over point between B-compensated, n-type films, and B-doped p-type films occurs for powers of 50 W supplied to the B-doped target and 100 W to the undoped target. B-compensated samples display trends in photoconductive properties essentially identical to results for μc-Si:H samples prepared by remote plasma CVD. However, IR studies indicate that the material shows significant post-deposition oxide formation. TEM studies confirm the existence of a low-density, porous network. Work is underway to optimize the structural aspects of this material.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3